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Abstract

Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiq-

uitous in the animal kingdom. On the other hand, movement and space use are also greatly

influenced by interactions between animals and their environment. Despite both types of in-

teraction fundamentally influencing animal behaviour, there has hitherto been no unifying

framework for the various models so far proposed. Here, we construct systems of coupled step

selection functions, providing a general method for inferring population-level spatial patterns

from underlying individual movement and interaction processes, a key ingredient in building

a statistical mechanics for ecological systems. We show that resource selection functions, as

well as several examples of collective motion models, arise as special cases of our framework,

thus bringing together resource selection analysis and collective animal behaviour into a single

theory. In particular, we focus on combining the various mechanistic models of territorial inter-

actions in the literature with step selection functions, by incorporate interactions into the step

selection framework and demonstrating how to derive territorial patterns from the resulting

models. We demonstrate the efficacy of our model by application to a population of insectivore

birds in the Amazon rainforest.
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Introduction

Recent years have seen an explosion in the number of studies devoted to collective animal

movement modelling, largely enabled by the availability of cheap, fast computational power

and vastly improved tracking data [1, 2]. They have succeeded in explaining a wide variety

of patterns observed in nature due to the movements and interactions of animals [3, 4], such

as bird flocking [5], ant raids [6], and fish schooling [7]. Furthermore, in the last few years,

the collective behaviour paradigm has been extended to include territorial and home range

patterns, which arise from conspecific avoidance mechanisms rather than those of alignment or

attraction [8, 9, 10].

Despite these myriad advancements, collective animal models remain disparate and var-

ied, with no quantitative formulation of a unifying framework encompassing the variety of

interaction mechanisms. In particular, territorial models have followed two separate modelling

paradigms. The first began with Lewis & Murray [11] and has been developed through a num-

ber of papers over the past 20 years, e.g. Moorcroft et al. [12, 13], culminating in the book

by Moorcroft & Lewis [8]. It involves constructing partial differential equations (PDEs) either

from details of the underlying movement and interaction processes or from more phenomenolog-

ical descriptions, and then using these equations to derive territorial patterns mathematically.

The second approach is based more on statistical physics, analysing the individual movement

and interaction processes themselves in discrete space, without taking a mean-field continuum

limit [9, 14].

Their differences notwithstanding, both approaches employ a similar approach to data anal-

ysis, by fitting the emergent territorial patterns to positional data. Whilst this is a reasonable

way of testing hypotheses about the underlying causes of spatial patterns [13], it is not suffi-

cient for concrete quantification of the underlying movement and interaction processes, since

many different model processes can give rise to the same emergent spatial patterns. Therefore

when constructing a unifying framework for extracting interaction mechanisms, it is important

that the quantification happens on the same level that the model is constructed, rather than
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on the level of the model’s emergent features.

In areas outside territory formation, several recent examples from the collective behaviour

literature have pioneered a variety of techniques for doing exactly this [15]. For example, fish

repulsion-alignment-attraction mechanisms have been measured using several different tech-

niques [16, 17, 18], as have the geometric nature of their interactions [19] and their decision

processes [20, 21]. Others examples include alignment and leadership decisions in bird flocks

[22, 5, 23] and the drivers behind collective motion of prawns [24]. Though there have been

several theoretical studies aimed at more general application [20, 25], the techniques and mod-

els used to extract interaction mechanisms are varied and are often designed only for use with

one specific system.

Parallel to the collective animal literature, many studies have sought to understand and

predict space use patterns by examining interactions between animals and their environment.

Resource selection analysis is perhaps the widest used tool in this regard, and has a long history

[26]. Recently, this has been integrated with animal movement processes by constructing step

selection functions [27, 28, 29], which allow model building by rigorously deriving parameter

values from the data. These, in turn, have been used to build mechanistic models to derive space

use patterns from the underlying movement processes and animal-environment interactions [30],

representing the first step in unifying resource selection with mechanistic models. That said,

there is no attempt in that study to include between-animal interactions into this procedure.

Some studies in the step selection function literature have factored into their analysis either

positions of other individuals [31] or traces left in the environment by animals [32]. However,

to model simultaneously more than one interacting group of animals, so that it is possible to

build a mechanistic model to predict the resulting space use patterns, would require having

different interacting movement kernels for each group. For example, in a territorial system

there would be one function for each group maintaining a territory. These would then have

to be coupled together so that each function depends on the animals modelled by the other.

Though the general functional form might be the same for each group, e.g. to move away from
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foreign territory marks, the actual functions will differ from group to group, owing to the fact

that the profile of foreign marks will be different for each group.

In this paper, we present a modelling framework that unifies movement with both animal-

environment and inter-animal interactions. The inter-animal interactions may either be direct,

or mediated by a stigmergent process [33, 34] such as pheromone deposition or visual cues.

Our framework includes as special cases both step selection functions and the two approaches

to mechanistic territorial modelling mentioned above. Though we focus specifically on com-

bining territorial interactions into the concept of step selection, our framework also happens

to incorporate a variety of other collective motion models, suggesting far broader application

(see Table 1). As such, our framework provides a useful way to codify movement and inter-

action processes, giving a generic starting point for modelling these processes and a clear way

of testing which combinations of them best describe the underlying data. This will both help

future researchers in model construction and provide a concrete means by which to compare

and contrast different modelling approaches.

We show how to use our model to test hypotheses about the interaction mechanisms un-

derlying territorial behaviour, by application to movement data on a community of territorial

insectivore bird flocks in the Amazon rainforest. Parameter values for a model of movement

and territorial interactions naturally arise from this hypothesis testing. This model can then be

analysed either using the PDE techniques of Moorcroft & Lewis [8] if possible, or by simulation

analysis [9, 14]. This enables the spatial territorial patterns to be derived from the underlying

movement and interaction processes, which can be compared with spatial data. We demon-

strate how to make this comparison quantitative, thereby giving a technique for determining

which the processes are the key drivers of space use in the study population. This ability of our

framework to derive ‘macroscopic’ patterns in a quantitative and non-speculative fashion from

a wide variety of ‘microscopic’ movement and interaction processes represents a significant step

forward in the general program of building a ‘statistical mechanics for ecological systems’ (Fig.

1) [35].
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Methods

Modeling framework

Our model is based around the notion of a step selection function [27]. However, simultaneous

modelling of various interacting animals, or groups of animals, requires having a different step

selection function for each animal or group. Therefore, instead of having one function that

models all agents, as with previous approaches, we construct a different function for each agent

and link them together with a coupling term. We use the term ‘agent’ here to refer to either

a single animal, or a group of animals that are modelled as moving together as a single entity,

for example a pack or a flock. The result is what we call a system of coupled step selection

functions (CSSFs), where each function has the following form

f t,τi (x|y, θ0) ∝ φi(x|y, θ0)Wi(x,y, E)Ci(x,y,P
t
i ), (1)

represented pictorially in Fig. 2. The function f t,τi (x|y, θ0) is the probability of agent i moving

to position x at time t+τ , given that the agent was at position y at time t and had arrived there

on a bearing θ0. The term φi(x|y, θ0) represents the movement process of agent i, disregarding

the effect of the environment or other agents. For example, this could contain the step length

and turning angle distribution for a correlated random walk [36].

The function Wi(x,y, E) is a weighting function containing information about the desirabil-

ity of moving across the environment E from position y to x. For example, if there is a partial

barrier to movement between y and x then Wi(x,y, E) may be lower than if the barrier were

not there. On the other hand, if x were in a very desirable habitat for the agent compared to

y then Wi(x,y, E) would be higher than if the habitats were equal in quality. See Fortin et al.

[27] for a good example of the variety of animal-environment interactions that can be modelled

this way.

The collective aspects of motion, i.e. the agent-agent interactions, are represented by

Ci(x,y,P
t
i ). The term Pt

i represents both the population positions and any traces of their past
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positions left either in the environment or in the memory of agent i. For example, if the agents

were schooling fish then perhaps the pertinent interactions would be direct [37]. However if

the agents were ants then Pt
i might represent the pheromones left by other ants, to which ant i

responds by tending to move up the pheromone gradient [6]. As a third example, if the agents

were territorial bird flocks then Pt
i might include the memory that the birds in flock i have of

past territorial conflicts or vocalisations. Thus we model this as a one-step Markov process,

possibly requiring high dimensions to encapsulate Pt
i appropriately.

Since f t,τi (x|y, θ0) is a probability, it must integrate or sum to 1, depending on whether

continuous space or discrete space is being used, respectively. Therefore we use the ∝ sign in

equation 1, noting that this becomes an equality if the right hand side is divided by the integral

(continuous space) or sum (discrete space) over the possible target positions x.

We demonstrate the generality of our formalism by showing that it reduces to ordinary step

selection functions [27], resource selection functions [46], and a variety of previously published

examples of collective motion models. The latter include models of trail-following ants [6], col-

lective patterns in animal populations through alignment and attraction [4, 38], and territorial

canids [8, 14, 10].

Application to bird data

As a demonstration of how to apply our model, we use movement data on a community of

territorial insectivore bird flocks in the Amazon rainforest. These flocks are multi-species, with

around 5-10 mating pairs consistently present sharing a territory [39]. Each pair will defend its

territory from conspecifics, using a mixture of vocalisations and direct territorial conflicts [40].

The birds from each flock meet together at a ‘gathering point’ at dawn every day, usually in a

central position within their territory, from where they forage within the territory for around

11-12 hours, moving together as a flock.

We use flock movement data from eleven different territories to test hypotheses about

the territorial interaction mechanisms used by the birds. We focus, for simplicity, on the vocal
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aspect of interactions. Vocalisations make neighbouring flocks aware of areas they have recently

visited, causing the neighbours to alter their movement processes in or near these areas. We

test three hypotheses: whether (1) flocks are likely to avoid areas that neighbours have visited

in the past, due to the vocalisations made there, (2) flocks tend to move back towards their

gathering site having visited such an area, (3) the time since the area was visited by a neighbour

affects the response of the flock, so that old vocalisations are ignored. This demonstrates the

ability of our modelling framework to select between competing theories about the nature of

interaction mechanisms.

We analysed movement of 11 different flocks in the Amazon rainforest over 3 years during

the dry season between June and November. The study site is about 70 km north of Manaus,

Brazil (see http://pdbff.inpa.gov.br/ for maps). They were each tracked for between 4 and

18 days. The flock positions were recorded every minute during the time that they were

active. Flock activity is conspicuous, so that birds can be followed on foot. As flocks moved,

geolocations were recorded with a hand-held GPS unit (Garmin Vista HCX). The observer

maintained a distance of 10-20m from the flocks to ensure no alarm or avoidance behaviour

was induced in the birds.

To examine which territorial interaction processes best fit these data, we constructed a cou-

pled step selection function (Eq. 1) where the terms φi(x|y, θ0) and Wi(x,y, E) were obtained

from a previous study on the same population [41]. In that paper, we found that setting φi

to be a product of the exponentiated Weibull distribution [42] for the step lengths and a von

Mises distribution [43] for the turning angles fitted the data well. This led to the following

distribution

φi(x|y, θ0) =
ac

b

(x

b

)a−1

exp
[

−
(x

b

)a]

×

{

1− exp
[

−
(x

b

)a]}c−1 exp[k cos(θ − θ0)]

2πI0(k)
, (2)

where each agent i is an individual flock, θ is the bearing from y to x, a = 1.06, b = 6.90,

http://pdbff.inpa.gov.br/
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c = 1.82, k = 0.336 and I0(k) is a modified Bessel function of the first kind. The best fit

model from Potts et al. [41] for the Wi term is Wi(x,y, E) = C(x)αT (x)−β , where C(x) and

T (x) are, respectively, the forest canopy height and topography in meters, at position x. The

time-interval τ is 1 minute and the best fit values for the parameters are α = 0.0952 and

β = 1.658

For the interaction term Ci(x,y,P
t
i ), we used various modifications of the territoriality

model from Potts et al. [10], used to uncover behavioural mechanisms in a red fox (Vulpes

vulpes) population. Specifically, Pt
i (x) = T if any flock j 6= i is at position x at time t, and

Pt
i (x) = min{Pt−τ

i (x) − τ, 0} otherwise. Though T represented the longevity of scent cues in

Potts et al. [10], here it represents the amount of time a bird will remember a conspecific bird

call from a particular location, and so respond to this memory when in that location. The

Cinerous Antshrike from each flock tends to make a call about every 2-5 minutes, which can

be detected by other birds at a distance of about 50 meters (Karl Mokross, pers. obs.). In

the model, we implicitly assume, for simplicity, that birds make calls each time they move and

that they are always heard by neighbouring flocks.

To test hypothesis (1), we examined whether using the following coupling function

Ci(x,y,P
t
i ) = {[T − Pt

i (x)]/T}
γ (3)

gives a better fit to the data than the case of no interactions, Ci(x,y,P
t
i ) = 1. For hypothesis

(2), we used the following coupling function

Ci(x,y,P
t
i ) = V (kI[Pt

i (y) > 0], θ − θg) (4)

with T = ∞, where V (κ, ψ) is a von Mises distribution [43], I[X] is an indicator function taking

value 1 if X is true and 0 otherwise, θ is the bearing from y to x and θg is the bearing from

y to the gathering point. For hypothesis (3), we used the coupling function from Eq (4), but

with T a finite free parameter, to test whether allowing T to be finite significantly improves
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the fit.

We fitted the various models to the data using a maximum likelihood technique, whereby

we found the free parameters that maximise the product over i and n of f
ti,n,τ

i (xi,n+1|xi,n, θi,n),

where xi,0, . . . ,xi,Ni
are the positions of flock i at times ti,0, . . . , ti,Ni

. To find this maximum, we

used the Nelder-Mead simplex algorithm as implemented in the Python maximize() function

from the SciPy library [44]. For hypothesis (1), the free parameters are T and γ. For hypothesis

(2), the free parameter is k, and for (3) it is T . The p-values for hypothesis testing were obtained

using the likelihood ratio test.

One of the strengths of the coupled step selection function approach is that the result

of hypothesis testing and/or model selection naturally gives rise to a mechanistic movement

model, given by the particular version of equation (1) that corresponds to the best fit model and

parameter values. This enables one to determine the space use (i.e. home range) patterns that

emerge from the model. We test whether the patterns that emerge from the best model that

includes resource selection, topographical selection and territorial interactions are a significantly

better fit to the data than the same model without the territorial interactions.

To do this, we constructed a simulation model for the bird flocks, whose movements each

step are determined by drawing from the time-dependent probability distribution from Eq. 1

with the best-fit parameter values found by the hypothesis testing technique above. Since each

flock gathers in one particular place each day, and moves around the terrain for a total of

about eleven-and-a-half hours during the day, we started the simulated birds at the gathering

point and ran the simulation for 690 time steps, each step representing τ = 1 minutes (giving 11

hours 30 minutes in total), taking a note of all the positions at which the flock landed after each

step. We repeated this 100 times, representing 100 days, giving 69,000 simulated positions for

each flock, from which we calculated home ranges using the Kernel Density Estimation (KDE)

method. We also ran identical simulations except where the model has Ci(x,y,P
t
i ) = 1, so that

no territorial interactions were included.

To test which model performed better at predicting space use, we compared the Kullback-
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Leibler (K-L) distance [45] between each model’s KDE distribution and the KDE distribution

for the data. The K-L distance differs by a constant from 1/2 times the average Akaike

Information Criterion (AIC) of a single sample from the data’s KDE distribution (see Burnham

& Anderson [45] for details). Therefore the difference in AIC (∆AIC) for two different models

of the same data distribution can be thought of as twice the difference in K-L distance, by

considering a single KDE distribution as a single data sample. We have 11 flocks, so 11 KDE

distributions. The ∆AIC is twice the sum of the differences in K-L distance across these flocks.

We use this value to assess whether the resulting model is better at predicting space use, as

opposed to just movement choices, than the model with no territorial interactions. To test

whether the models are a good fit to the data, we used a Pearson’s chi-squared test, treating

each 10m by 10m square as a single data bin. For this, we used the positional data rather than

the smoothed data.

Results

Framing existing models as coupled step selection functions

Step selection and resource selection. Step selection functions are simply single examples

of equation (1) with the collective term Ci(x,y,P
t
i ) equal to 1 [27, 29, 32, 31]. In other words

we just consider one animal at a time, and how it interacts with its environment, without at-

tempting to use the results to construct a mechanistic model of interacting animals. Resource

selection functions are similar, but the environment-independent movement term φi(x|y, θ0) is

replaced with an availability function, which can take whichever form the user feels is appro-

priate for study, e.g. Boyce et al. [46], Rhodes et al. [28].

Individual based territory models. The selection of studies by Giuggioli et al. [9, 47] and

Potts et al. [14, 10] modelled territorial interactions using moving agents on a square lattice.

The initial model from Giuggioli et al. [9] has agents performing nearest neighbour random

walks and depositing scent as they move. The scent remains for a finite time T , the so-called
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active scent time, after which it is no longer considered as ‘active’ by conspecifics. Each animal’s

movement is restricted by the fact that it cannot move into an area that contains active scent

of a neighbour.

This can be framed as a coupled step selection function where φi(x|y, θ0) = 1/4 if x is the

lattice site either immediately above, below, to the right, or to the left of y, and φi(x|y, θ0) = 0

otherwise. Additionally, since this model does not include any environmental interactions, we

set Wi(x,y, E) = 1. The term Pt
i (x) represents the presence of scent at position x and time t,

so that

Pt
i (x) =















T any animal j 6= i is at position x at time t,

min{Pt−τ
i (x)− τ, 0} otherwise.

(5)

Then the collective interaction term is

Ci(x,y,P
t
i ) =















1 if Pt
i (x) = 0,

0 otherwise.

(6)

The coupled step selection function formalism (equation 1) gives a natural way of incorporating

environmental interactions into such territoriality models, an aspect of this approach hitherto

lacking, as noted in Giuggioli et al. [34].

Advection-diffusion territory models. The type of territorial models described in Moor-

croft & Lewis [8] provide several other examples of coupled step selection functions. We describe

an individual-level model in a 1D interval [0, 1] that has as its continuum limit the original ad-

vection diffusion model of Lewis & Murray [11]. To do this, we first set

φi(x|y) =
exp(−|x− y|/a)

2a
, (7)

where a is the average step length, andWi(x, y, E) = 1. This means that the intrinsic movement
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of each agent (pack of wolves) is a random walk with no correlation, and we are ignoring the

effects of the environment on movement.

There are two agents in the model, so i ∈ {0, 1}. The collective action is mediated by

scent deposition so that Pt
i (x) represents the scent mark density of pack 1 − i. Marking by

individual i occurs at a rate l+mPt
1−i(x), wherem is typically a monotonic increasing function,

representing the tendency of wolves to mark more heavily when conspecific marks are present.

Pt
i (x) is governed by the following equation

Pt
i (x) = (1− µτ)Pt−τ

i (x) + δ(xi−1 − x)[l +mPt
1−i(x)]τ (8)

where xi is the position of agent i at time t− τ and µ is the scent decay rate.

Packs have a tendency to move back towards their home range centre on encountering

foreign scent. Assuming that the home range center of pack 0 is to the left of the study area

and pack 1 to the right, the collective interaction term is given by

C0(x, y,P
t
0) =I(x > y)τ [D/a− CPt−τ

0
(x)] + I(x ≤ y)τ [D/a+ CPt−τ

0
(x)] (9)

C1(x, y,P
t
1) =I(x > y)τ [D/a+ CPt−τ

1
(x)] + I(x ≤ y)τ [D/a− CPt−τ

1
(x)] (10)

where D and v are parameters, which can be determined by model fitting, and I(X) is an

indicator function that is equal to 1 if X is true and 0 otherwise.

Now we move from an individual description to positional probability density functions. Let

u(x, t) (resp. v(x, t)) be the probability distribution of pack 0 (resp. pack 1). For notational

convenience, we rename the scent levels of packs 0 and 1 to p(x, t) and q(x, t) respectively.

Then standard theory, e.g. Moorcroft & Lewis [8, chapter 2], means that the limit as τ → 0,

a→ 0 of u(x, t) is governed by the following advection-diffusion equation

∂u

∂t
=

∂2

∂x2
[du(x, t)u(x, t)] −

∂

∂x
[cu(x, t)u(x, t)], (11)
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where the advection and diffusion functions [cu(x, t) and du(x, t) respectively] are the following

limits

cu(x, t) = lim
τ→0

1

τ

∫

∞

−∞

(y − x)φ0(x|y)C0(x, y, q)dy,

du(x, t) = lim
τ→0

1

τ

∫

∞

−∞

(y − x)2φ0(x|y)C0(x, y, p)dy. (12)

This theory is built by constructing the master equation for u. Implicit in the construction is

the so-called ‘mean-field’ approximation, which assumes that the covariance between the scent

mark density and the position of the pack is (approximately) zero. A direct calculation shows

that cu(x, t) = Cq(x, t) and du(x, t) = D. The equation for v(x, t) is analogous, but with φ0,

C0, cu, du, and q replaced by φ1, C1, cv, dv, and p respectively. Therefore cv(x, t) = −Cp(x, t)

and dv(x, t) = D.

The advection diffusion equations for this system of coupled step selection functions are

then

∂u

∂t
= D

∂2u

∂x2
− C

∂

∂x
[qu],

∂v

∂t
= D

∂2v

∂x2
+ C

∂

∂x
[pv]. (13)

Furthermore, the continuous-time limits of the scent marking equations (8) are as follows [48,

chapter 3]

∂p

∂t
=u(l +mq)− µp,

∂q

∂t
=v(l +mp)− µq. (14)

Equations (13) and (14) form the system studied in Lewis & Murray [11]. This process can be

generalized to derive advection diffusion equations describing territorial pattern formation in

two dimensions [8].
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Equation (1) also reduces to a variety of collective motion models other than territorial

ones, including trail-following ants [6] and collective patterns in animal populations through

alignment and attraction [4, 38]. Since analysis of such collective animal models is not the main

reason for constructing this framework, detailed explanations are left to the Supplementary

Information.

The example of Amazonian bird flocks

When we apply our technique to data on Amazonian birds, there is no significant improvement

in fit (p = 0.60) if we model birds as having a tendency not to go into areas from where

they have heard conspecific bird calls in the past (hypothesis 1 from the Methods section).

However, when flocks are modelled as being allowed to move into neighbouring territories, but

then having a tendency to retreat in the direction of the gathering point (hypothesis 2), we

observe a significant improvement in fit (p = 0.022). If we assume that the territorial cues

have a finite lifetime (hypothesis 3), the fit becomes worse, suggesting that birds are able to

remember these cues for a very long time after they have been made.

To demonstrate the space use patterns that arise from these results, we constructed simu-

lations using the gathering point attraction model, used to test hypothesis 2, with the best fit

parameters of T = ∞ and k = 0.0597 (Fig. 3). For 9 of the 11 flocks, the resulting Kernel Den-

sity Estimator (KDE) distributions are closer to those of the data than the KDE distributions

without territorial interactions (see Table 2). Furthermore, the resulting difference in Akaike

Information Criteria (∆AIC) between the two models is ∆AIC= 4.07, giving reasonable evi-

dence to suggest that the model including territorial interactions is better at predicting space

use patterns than that without. This is demonstrated pictorially in Fig. 3b, which shows that

the model including territorial interactions is more highly peaked at the center and includes a

lower density of outliers.

Of the two flocks that are not well-modelled by incorporating territorial interactions, for

Cap North we have no data on adjacent flocks (Fig. 3a) so the inability of the model to
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detect territorial interactions is unsurprising. Cap II, on the other hand, is located in the most

degraded area of all flocks in the study. Subsequent observations of the study area suggest

that it did not persist over time, as key species either abandoned the area or died. Therefore

the territory could well be in the process of moving or degrading during the study period,

mechanisms that are likely to be key drivers in shaping the space use, but which are absent

from our current model.

For all of the flocks except Cap II, there was insufficient evidence to suggest that the data

did not come from the model distribution that included territorial interactions (p < 0.0001

for Cap II, p > 0.999 for the others). The same test with the model that excluded territorial

interactions suggested that there was only sufficient evidence to reject the hypothesis that

the data came from the model for Cap II and Central (p < 0.0001 for Cap II and Central,

p > 0.999 for the others). Therefore we have significantly improved the absolute fit of the

Central data by including territorial interactions. Central is the only flock for which we have

data on all surrounding flocks so it is precisely the flock for which one would most expect to

see improvement of absolute fit.

Discussion

We have constructed a general model for the effects on movement of both animal-habitat and

between-animal interactions. We have demonstrated how the model encompasses, as special

cases, a variety of disparate collective motion models as well as resource and step selection

functions. By fitting a version of our model to data on bird flock locations, we have shown

how it can be used to determine and quantify the nature of territorial interactions, as well as

modelling simultaneously the effects of both conspecifics and the environment on movement

processes. Since we framed the system as a one-step Markovian model of both the animals

and their environment, our framework allows for relatively simple calibration of models, which

makes the process computationally fast. This contrasts with methods that fit the movement

path as a whole, such as state-space models, which can be difficult to fit [49].
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Though we have focused on territorial modelling, so not given an exhaustive demonstration

of how our framework might be reducible to all collective behaviour models in the literature,

we display a variety of different examples, encompassing both direct and mediated interac-

tions, both conspecific attraction and avoidance processes. These demonstrate the possible

wide applicability of our approach, and potential to frame many more models as coupled step

selection functions. Encompassing competing models of collective behaviour under this unify-

ing framework will make future comparisons easier, aided by the methods given here for fitting

coupled step selection functions to data. Furthermore, it will enables transference of techniques

and results between the hitherto disparate fields of collective motion, resource selection and

mechanistic territorial modelling.

Whilst we have concentrated on correlated random walk mechanisms, the φi(x|y, θ0) term

in equation (1) can be used to express, in principle, any movement processes. For example, fat

tailed step length distributions have recently been used for modelling animals in a variety of

contexts. These may arise due to underlying phenomena such as individual variation [50] or

switching between different modes of behaviour [51]. Brownian bridges provide another class

of movement processes, which have been used for both home range and migration analysis [52].

Either of these processes can readily be substituted into the φi(x|y, θ0) term of equation (1),

if the species under consideration is best described by them.

By applying our model to movement patterns of bird flocks, we were able to test hypothe-

ses about the mechanisms behind the interaction processes. Previous studies of mechanisms

underlying territorial patterns in populations of scent-marking animals postulated that they

will avoid areas that have recently been claimed by others as their territory [10]. Here we have

shown that the territorial interaction mechanism in bird flocks is quite different. There is no

evidence to suggest that they tend to avoid places that have previously been claimed as other

flocks’ territories. However, after visiting the outskirts of neighbouring territories, they will

change their movement processes to include a tendency to retreat back inside their territory.

These visitations explain the observed slightly overlapping utilisation distributions in the birds’
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spatial patterns (see Fig. 3).

Similar overlapping distributions have been observed in other territorial populations and

shown to arise due to movement in territory borders caused by a finite time-scale in the ter-

ritorial response mechanism [10]. Such border movement can cause flexibility in the size and

shape of territories. However, in the bird population studied here, the memory of territorial

interactions in the minds of conspecifics appears to persist for a much longer time than just

a few days, which in turn explains the observed stability in flock utilisation distributions over

many years [53].

Our framework can also be used to build predictive, mechanistic models showing how

utilisation distributions arise from the underlying movement and interaction processes. To

demonstrate this, we used stochastic simulations of the best fit system of coupled step selec-

tion functions for the bird data. Recently, step selection functions have been used to construct

deterministic master equation [41] and partial differential equation models [30], from which

the resulting spatial distributions can be analysed using well-studied mathematical tools, e.g.

Moorcroft & Lewis [8]. Whilst the coupling term in our framework makes such analysis signifi-

cantly more complicated than for ordinary step selection functions, deterministic mathematical

formulations would ultimately enable concrete conclusions to be reached without the need for

extensive, time-consuming computer simulations. We therefore hope, in future work, to begin

a program of analysing coupled step selection models mathematically.

Though mechanistic models have previously been proposed to explain space use patterns

by examining both movement, territorial interactions and environmental features [13], those

models fit the emergent space use distribution to relocation data, whereas our model is directly

fitted to the movement trajectory itself, enabling the space use distribution to arise with no

additional fitting. The advantage of this is twofold. First, there is no need to throw away

data in order to make sure each data point is an independent sample of the spatial distribution

from the others (see Moorcroft & Lewis [8] for details of, and rationale behind, this procedure).

Therefore we can use the complete movement trajectory, containing much more information.
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Second, fitting the model to the underlying movement choices ensures that the parameter

values used to construct the model arise from the movement and interaction processes rather

than the emergent patterns. This means that we can assess to what extent these processes

predict space use, and where they fail. For example, in the data studied here, the space use of

two flocks (Cap II and Cap North) were not predicted by the territorial interaction model as

well as by the no-interaction model, unlike the other nine flocks (Table 2). Therefore we can

postulate hypotheses about what other processes may be required to predict space use in these

instances. On the other hand, fitting directly to the space use distribution implicitly assumes

that the mechanistic model describes well all aspects of movement that give rise to the spatial

patterns. Consequently, this procedure may cause inaccurate inferences to be made about the

parameter values of the underlying processes. In other words, our approach is more cautious,

therefore less likely to lead to incorrect results and more likely to reveal the extent to which

certain processes fail to predict accurately the spatial patterns.

As an alternative to mathematical models of space use, simulations of individual based

models have also been used to attempt to understand animal movement decisions and emergent

spatial patterns [54]. Typically, they take a pattern-oriented approach [55, 56], beginning by

including as many aspects of the animal’s movement and interaction processes as are believed

to cause the observed patterns. If the empirical patterns, also called summary statistics, are

observed in the model output then the model is simplified to try to understand exactly which

of the processes are causing the patterns to emerge. The aim of this approach is to find models

that replicate as many of the summary statistics observed in the data as possible, with as few

model parameters.

Our approach, on the other hand, is process-based in nature [57], seeking to build an indi-

vidual based mechanistic model by testing hypotheses about the underlying processes one at

a time. The key difference is that we test the model parameters against the data for valid-

ity on the same level of description at which the model is constructed. The pattern-oriented

approach tests the model parameters at a different level of description: that of the summary
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statistics. However, this is not sufficient for making inferences about the parameter values put

into the model. Though analysis of a mechanistic model, individual based or analytic, shows

that process A implies pattern B, showing that pattern B replicates the data does not imply

that the underlying mechanism is actually process A. Therefore it is not possible, purely us-

ing a pattern-oriented approach, to make solidly-grounded inferences about the nature of the

mechanisms that have gone into construction of the model. In our approach, we circumvent

this issue by testing and parameterising the model’s mechanisms on the level of description at

which they are constructed, then observing the patterns as an emergent feature of the model,

which can in turn be compared with the patterns from data.

Recent developments in the collective behaviour literature provide many good examples of

process-based modelling and model parameterisation [5, 16, 17, 20, 18, 23, 19, 21]. However,

very few examine the emergent features of these data-parameterised models and test whether

they accurately replicate the population level patterns seen in the data, as we do here. That

said, there are exceptions, e.g. Pettit et al. [23], and these models could, in principle, be used

in conjunction with theoretical mechanistic models of pattern formation, such as Goldstone

& Janssen [58], Eftimie et al. [38], to provide a full story. If they were to be framed under

a single overarching methodological framework, such as the coupled step selection functions

proposed here, then this would aid sort of the unification of process-based model construction

and theoretical process-to-pattern analysis that has recently been sought after [15].

Though our model was significantly better at predicting space use than the model free of

territorial interactions, it is clear from Fig. 3a that our model does not capture all aspects of

the birds’ spatial patterns. However, the strength of our approach is that we can readily add

further behavioural features one at a time, testing the efficacy of each using the techniques

detailed here. For example, the birds are known to have direct territorial conflicts, which

affect where they move in subsequent days and weeks. Also, the movement is driven by intra-

flock interactions, with one particular species, the Cinerous Antshrike (Thamnomanes caesius),

playing the main role in maintaining cohesiveness. By using our techniques to test the effect of
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such behavioural phenomena on movement and space use, we can move towards building truly

accurate, predictive models linking movement processes, conspecific interactions and collective

behaviour, to the emergent space use distributions.
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Figure 1. The role of coupled step selection functions in linking movement to

emergent spatial patterns. This schematic represents the central place of coupled step
selection functions for the program of constructing a statistical mechanics for ecological
systems. Different candidate models M1, . . . ,MN can be tested against ‘microscopic’
movement and interaction data using the techniques in the Methods section. The best models
can then either be simulated or mathematically analysed to derive spatial patterns. These, in
turn, can be compared to the ‘macroscopic’ spatial distributions in the data (see Methods) to
test whether the mechanisms being modelled are sufficient for accurate predictions of spatial
patterns.
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Figure 2. Where next? A typical coupled step selection function, giving the probability of
an animal’s next move, dependent on territorial marks and resource quality. This is
determined both by the strength of territorial marks of conspecifics, given in panel (a), and
the quality of the resources (b). The strength of territory marks in this example does not
change in the Y -direction, so that animal 1 has territory on the left and animal 2 on the
right. The probability of animal 1’s (resp. animal 2’s) next position after some time interval
τ , given that it’s current position is in the middle of the landscape (black dot), is shown in
panel (c) (resp, panel d). As each animals moves, it marks the terrain causing the territorial
profile to change over time, which in turn influences the other animal’s movements. This
causes a coupling between their respective step selection functions.
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Figure 3. Space use predictions of bird flocks using a coupled step selection

function. In panel (a), the dots represent recorded positions of bird flocks, whereas the
contours detail the space use distributions that arise from a territorial- and
environmental-interaction model that best fits the movement data (see Methods for details).
The colors of the contours for each flock correspond to those of both the positional data
points and the text giving the flock names. Panel (b) shows the predicted position
distributions for the Central flock with territorial interactions minus those without such
interactions. Note that no fitting was performed between the model spatial distribution and
the bird positions. Instead, the distributions simply emerge from the model’s underlying
movement and interaction processes.
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Table 1. Various models from the literature that can be formulated as coupled step selection
functions. Interaction models are classified as one or more of animal-environment (E),
between-animal direct interactions (BD), between-animal mediated interactions (BM),
alignment-and-attraction models (AA), conspecific avoidance models (CA).

Model Reference Interaction type

Resource selection Boyce et al. [46] E

Step selection Fortin et al. [27] E

Individual-based collective behaviour Couzin et al. [4] BD, AA

Differential equation collective behaviour Eftimie et al. [38] BD, AA

Army ant foraging Deneubourg et al. [6] BM, AA

Individual-based territory formation Giuggioli et al. [9] BM, CA

Differential equation territory formation Moorcroft & Lewis [8] BM, CA

Table 2. Fitting models both with and without territorial interactions to data on bird flock
movement. For each flock, the Kullbeck-Leibler (K-L) distance between the data’s Kernel
Density Estimator (KDE) distribution and the model’s KDE distribution is given. For all but
two of the flocks, the model that includes territorial interactions performs best, shown by a
positive difference in column 4.

Flock K-L with interactions K-L no interactions Difference

Central 0.868 1.236 0.367

North 1.018 1.442 0.424

South Central 0.673 0.826 0.152

South West 1.020 1.317 0.297

Lake 0.902 1.063 0.161

W400 0.737 0.989 0.252

Cap II 3.527 3.377 -0.150

Cap South 1.192 1.465 0.305

Ig-Cmp 0.779 1.013 0.234

Cap North 1.125 1.048 -0.077

North-East 0.967 1.038 0.071


